1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
//! Computes the logarithmic softmax of its input.
//!

use crate::co::{IBackend, SharedTensor};
use crate::conn;
use crate::layer::*;
use crate::util::ArcLock;

#[derive(Debug, Clone)]
#[allow(missing_copy_implementations)]
/// LogSoftmax Layer
pub struct LogSoftmax;

impl<B: IBackend + conn::LogSoftmax<f32>> ILayer<B> for LogSoftmax {
    fn reshape(
        &mut self,
        backend: ::std::rc::Rc<B>,
        input_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
        input_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
        weights_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
        weights_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
        output_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
        output_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
    ) {
        let input_desc = input_data[0].read().unwrap().desc().clone();
        input_gradient[0].write().unwrap().resize(&input_desc).unwrap();
        output_data[0].write().unwrap().resize(&input_desc).unwrap();
        output_gradient[0].write().unwrap().resize(&input_desc).unwrap();
    }
}

impl<B: IBackend + conn::LogSoftmax<f32>> ComputeOutput<f32, B> for LogSoftmax {
    fn compute_output(
        &self,
        backend: &B,
        _weights: &[&SharedTensor<f32>],
        input_data: &[&SharedTensor<f32>],
        output_data: &mut [&mut SharedTensor<f32>],
    ) {
        backend.log_softmax(input_data[0], output_data[0]).unwrap();
    }
}

impl<B: IBackend + conn::LogSoftmax<f32>> ComputeInputGradient<f32, B> for LogSoftmax {
    fn compute_input_gradient(
        &self,
        backend: &B,
        weights_data: &[&SharedTensor<f32>],
        output_data: &[&SharedTensor<f32>],
        output_gradients: &[&SharedTensor<f32>],
        input_data: &[&SharedTensor<f32>],
        input_gradients: &mut [&mut SharedTensor<f32>],
    ) {
        backend
            .log_softmax_grad(output_data[0], output_gradients[0], input_gradients[0])
            .unwrap();
    }
}

impl<B: IBackend + conn::LogSoftmax<f32>> ComputeParametersGradient<f32, B> for LogSoftmax {}

impl ::std::default::Default for LogSoftmax {
    fn default() -> LogSoftmax {
        LogSoftmax
    }
}