use crate::co::{IBackend, SharedTensor};
use crate::conn;
use crate::layer::*;
use crate::util::ArcLock;
#[derive(Debug, Clone)]
#[allow(missing_copy_implementations)]
pub struct Softmax;
impl<B: IBackend + conn::Softmax<f32>> ILayer<B> for Softmax {
fn reshape(
&mut self,
backend: ::std::rc::Rc<B>,
input_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
input_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
weights_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
weights_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
output_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
output_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
) {
let input_desc = input_data[0].read().unwrap().desc().clone();
input_gradient[0].write().unwrap().resize(&input_desc).unwrap();
output_data[0].write().unwrap().resize(&input_desc).unwrap();
output_gradient[0].write().unwrap().resize(&input_desc).unwrap();
}
}
impl<B: IBackend + conn::Softmax<f32>> ComputeOutput<f32, B> for Softmax {
fn compute_output(
&self,
backend: &B,
_weights: &[&SharedTensor<f32>],
input_data: &[&SharedTensor<f32>],
output_data: &mut [&mut SharedTensor<f32>],
) {
backend.softmax(input_data[0], output_data[0]).unwrap();
}
}
impl<B: IBackend + conn::Softmax<f32>> ComputeInputGradient<f32, B> for Softmax {
fn compute_input_gradient(
&self,
backend: &B,
weights_data: &[&SharedTensor<f32>],
output_data: &[&SharedTensor<f32>],
output_gradients: &[&SharedTensor<f32>],
input_data: &[&SharedTensor<f32>],
input_gradients: &mut [&mut SharedTensor<f32>],
) {
backend
.softmax_grad(output_data[0], output_gradients[0], input_gradients[0])
.unwrap();
}
}
impl<B: IBackend + conn::Softmax<f32>> ComputeParametersGradient<f32, B> for Softmax {}
impl ::std::default::Default for Softmax {
fn default() -> Softmax {
Softmax
}
}