1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//! Provides the convolution functionality from the CUDA cuDNN API.
//!
//! Includes the convolution and filter functionality.

use crate::ffi::*;
use crate::{Error, API};

impl API {
    //
    // cuDNN Filter
    //

    /// Creates a generic CUDA cuDNN Filter Descriptor.
    pub fn create_filter_descriptor() -> Result<cudnnFilterDescriptor_t, Error> {
        unsafe { API::ffi_create_filter_descriptor() }
    }

    /// Destroys a CUDA cuDNN Filter Descriptor.
    ///
    /// Should be called when freeing a CUDA::Descriptor to not trash up the CUDA device.
    pub fn destroy_filter_descriptor(desc: cudnnFilterDescriptor_t) -> Result<(), Error> {
        unsafe { API::ffi_destroy_filter_descriptor(desc) }
    }

    /// Initializes a generic CUDA cuDNN Filter Descriptor with specific properties.
    pub fn set_filter_descriptor(
        desc: cudnnFilterDescriptor_t,
        data_type: cudnnDataType_t,
        tensor_format: cudnnTensorFormat_t,
        nb_dims: ::libc::c_int,
        filter_dim_a: *const ::libc::c_int,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_set_filter_nd_descriptor(desc, data_type, tensor_format, nb_dims, filter_dim_a)
        }
    }

    unsafe fn ffi_create_filter_descriptor() -> Result<cudnnFilterDescriptor_t, Error> {
        let mut desc: cudnnFilterDescriptor_t = ::std::ptr::null_mut();
        match cudnnCreateFilterDescriptor(&mut desc) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(desc),
            cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => {
                Err(Error::AllocFailed("The resources could not be allocated."))
            }
            status => Err(Error::Unknown(
                "Unable to create generic CUDA cuDNN Filter Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    unsafe fn ffi_destroy_filter_descriptor(desc: cudnnFilterDescriptor_t) -> Result<(), Error> {
        match cudnnDestroyFilterDescriptor(desc) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            status => Err(Error::Unknown(
                "Unable to destroy CUDA cuDNN Filter Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    unsafe fn ffi_set_filter_nd_descriptor(
        desc: cudnnFilterDescriptor_t,
        data_type: cudnnDataType_t,
        tensor_format: cudnnTensorFormat_t,
        nb_dims: ::libc::c_int,
        filter_dim_a: *const ::libc::c_int,
    ) -> Result<(), Error> {
        match cudnnSetFilterNdDescriptor(desc, data_type, tensor_format, nb_dims, filter_dim_a) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam(
                "`filter_dim_a` has a negative element or invalid `data_type` provided.",
            )),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => {
                Err(Error::NotSupported("`nb_dims` exceeds CUDNN_DIM_MAX."))
            }
            status => Err(Error::Unknown(
                "Unable to set CUDA cuDNN Filter Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    ///
    /// cuDNN Convolution Configuration
    ///

    /// Returns the most performant convolutional forward algorithm, for the given scenario.
    pub fn find_convolution_forward_algorithm(
        handle: cudnnHandle_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<Vec<cudnnConvolutionFwdAlgoPerf_t>, Error> {
        unsafe {
            API::ffi_find_convolution_forward_algorithm(
                handle,
                src_desc,
                filter_desc,
                conv_desc,
                dest_desc,
            )
        }
    }

    /// Returns the workspace size in byte, which are needed for the given convolutional algorithm.
    pub fn get_convolution_forward_workspace_size(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionFwdAlgo_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<usize, Error> {
        unsafe {
            API::ffi_get_convolution_forward_workspace_size(
                handle,
                algo,
                src_desc,
                filter_desc,
                conv_desc,
                dest_desc,
            )
        }
    }

    /// Returns the most performant convolutional backward data algorithm, for the given scenario.
    pub fn find_convolution_backward_filter_algorithm(
        handle: cudnnHandle_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<Vec<cudnnConvolutionBwdFilterAlgoPerf_t>, Error> {
        unsafe {
            API::ffi_find_convolution_backward_filter_algorithm(
                handle,
                src_desc,
                dest_desc,
                conv_desc,
                filter_desc,
            )
        }
    }

    /// Returns the workspace size in byte, which are needed for the given convolutional algorithm.
    pub fn get_convolution_backward_filter_workspace_size(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionBwdFilterAlgo_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<usize, Error> {
        unsafe {
            API::ffi_get_convolution_backward_filter_workspace_size(
                handle,
                algo,
                src_desc,
                dest_desc,
                conv_desc,
                filter_desc,
            )
        }
    }

    /// Returns the most performant convolutional backward data algorithm, for the given scenario.
    pub fn find_convolution_backward_data_algorithm(
        handle: cudnnHandle_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<Vec<cudnnConvolutionBwdDataAlgoPerf_t>, Error> {
        unsafe {
            API::ffi_find_convolution_backward_data_algorithm(
                handle,
                filter_desc,
                dest_desc,
                conv_desc,
                src_desc,
            )
        }
    }

    /// Returns the workspace size in byte, which are needed for the given convolutional algorithm.
    pub fn get_convolution_backward_data_workspace_size(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionBwdDataAlgo_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<usize, Error> {
        unsafe {
            API::ffi_get_convolution_backward_data_workspace_size(
                handle,
                algo,
                filter_desc,
                dest_desc,
                conv_desc,
                src_desc,
            )
        }
    }

    unsafe fn ffi_find_convolution_forward_algorithm(
        handle: cudnnHandle_t,
        src_desc: cudnnTensorDescriptor_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<Vec<cudnnConvolutionFwdAlgoPerf_t>, Error> {
        let mut perf_results: Vec<cudnnConvolutionFwdAlgoPerf_t> = vec![
            cudnnConvolutionFwdAlgoPerf_t::default(),
            cudnnConvolutionFwdAlgoPerf_t::default(),
        ];
        match cudnnFindConvolutionForwardAlgorithm(handle, src_desc, filter_desc, conv_desc, dest_desc, 2, &mut 0, perf_results.as_mut_ptr()) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(perf_results),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The handle is not allocated properly. The `src-`, `filter-` or `dest-` descriptor is not allocated properly. The `src-`, `filter-` or `dest-` descriptor has fewer than 1 dimension. Either `returnedCount` or `perfResults` is pointing to NULL. The requestedCount is less than 1.")),
            cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => Err(Error::AllocFailed("The resources could not be allocated.")),
           status => Err(Error::Unknown("Unable to find CUDA cuDNN Convolution Forward Algorithm.", status as i32 as u64)),

        }
    }

    unsafe fn ffi_get_convolution_forward_workspace_size(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionFwdAlgo_t,
        src_desc: cudnnTensorDescriptor_t,
        filter_desc: cudnnFilterDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
    ) -> Result<::libc::size_t, Error> {
        let mut size = 0usize;

        match cudnnGetConvolutionForwardWorkspaceSize(handle, src_desc, filter_desc, conv_desc, dest_desc, algo, &mut size) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(size),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc` is NULL. The tensor `dest_desc` or `filter_desc` are not of the same dimension as `src_desc`. The tensor `src_desc`, `dest_desc` or `filter_desc` are not of the same data type. The numbers of feature maps of the tensor `src_desc` and `filter_desc` differ. The tensor `src_desc` has a dimension smaller than 3.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.")),
           status => Err(Error::Unknown("Unable to get CUDA cuDNN Convolution Forward Workspace size.", status as i32 as u64)),

        }
    }

    unsafe fn ffi_find_convolution_backward_filter_algorithm(
        handle: cudnnHandle_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        filter_desc: cudnnFilterDescriptor_t,
    ) -> Result<Vec<cudnnConvolutionBwdFilterAlgoPerf_t>, Error> {
        let mut perf_results: Vec<cudnnConvolutionBwdFilterAlgoPerf_t> = vec![
            cudnnConvolutionBwdFilterAlgoPerf_t::default(),
            cudnnConvolutionBwdFilterAlgoPerf_t::default(),
        ];
        match cudnnFindConvolutionBackwardFilterAlgorithm(handle, src_desc, dest_desc, conv_desc, filter_desc, 2, &mut 0, perf_results.as_mut_ptr()) { cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(perf_results), cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The handle is not allocated properly. The `src-`, `filter-` or `dest-` descriptor is not allocated properly. The `src-`, `filter-` or `dest-` descriptor has fewer than 1 dimension. Either `returnedCount` or `perfResults` is pointing to NULL. The requestedCount is less than 1.")), cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => Err(Error::AllocFailed("The resources could not be allocated.")),
           status => Err(Error::Unknown("Unable to find CUDA cuDNN Convolution Backward Filter Algorithm.", status as i32 as u64)),

        }
    }

    unsafe fn ffi_get_convolution_backward_filter_workspace_size(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionBwdFilterAlgo_t,
        src_desc: cudnnTensorDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        filter_desc: cudnnFilterDescriptor_t,
    ) -> Result<::libc::size_t, Error> {
        let mut size = 0usize;
        match cudnnGetConvolutionBackwardFilterWorkspaceSize(handle, src_desc, dest_desc, conv_desc, filter_desc, algo, &mut size) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(size),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc` is NULL. The tensor `dest_desc` or `filter_desc` are not of the same dimension as `src_desc`. The tensor `src_desc`, `dest_desc` or `filter_desc` are not of the same data type. The numbers of feature maps of the tensor `src_desc` and `filter_desc` differ. The tensor `src_desc` has a dimension smaller than 3.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.")),
           status => Err(Error::Unknown("Unable to get CUDA cuDNN Convolution Backward Filter Workspace size.", status as i32 as u64)),

        }
    }

    unsafe fn ffi_find_convolution_backward_data_algorithm(
        handle: cudnnHandle_t,
        filter_desc: cudnnFilterDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
    ) -> Result<Vec<cudnnConvolutionBwdDataAlgoPerf_t>, Error> {
        let mut perf_results: Vec<cudnnConvolutionBwdDataAlgoPerf_t> = vec![
            cudnnConvolutionBwdDataAlgoPerf_t::default(),
            cudnnConvolutionBwdDataAlgoPerf_t::default(),
        ];
        match cudnnFindConvolutionBackwardDataAlgorithm(handle, filter_desc, dest_desc, conv_desc, src_desc, 2, &mut 0, perf_results.as_mut_ptr()) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(perf_results),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The handle is not allocated properly. The `src-`, `filter-` or `dest-` descriptor is not allocated properly. The `src-`, `filter-` or `dest-` descriptor has fewer than 1 dimension. Either `returnedCount` or `perfResults` is pointing to NULL. The requestedCount is less than 1.")),
            cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => Err(Error::AllocFailed("The resources could not be allocated.")),
           status => Err(Error::Unknown("Unable to find CUDA cuDNN Convolution Backward Data Algorithm.", status as i32 as u64)),

        }
    }

    unsafe fn ffi_get_convolution_backward_data_workspace_size(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionBwdDataAlgo_t,
        filter_desc: cudnnFilterDescriptor_t,
        dest_desc: cudnnTensorDescriptor_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        src_desc: cudnnTensorDescriptor_t,
    ) -> Result<::libc::size_t, Error> {
        let mut size = 0usize;
        match cudnnGetConvolutionBackwardDataWorkspaceSize(handle, filter_desc, dest_desc, conv_desc, src_desc, algo, &mut size) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(size),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc` is NULL. The tensor `dest_desc` or `filter_desc` are not of the same dimension as `src_desc`. The tensor `src_desc`, `dest_desc` or `filter_desc` are not of the same data type. The numbers of feature maps of the tensor `src_desc` and `filter_desc` differ. The tensor `src_desc` has a dimension smaller than 3.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.")),
           status => Err(Error::Unknown("Unable to get CUDA cuDNN Convolution Backward Data Workspace size.", status as i32 as u64)),

        }
    }

    //
    // cuDNN Convolution
    //

    /// Creates a generic CUDA cuDNN Convolution Descriptor.
    pub fn create_convolution_descriptor() -> Result<cudnnConvolutionDescriptor_t, Error> {
        unsafe { API::ffi_create_convolution_descriptor() }
    }

    /// Destroys a CUDA cuDNN Convolution Descriptor.
    ///
    /// Should be called when freeing a CUDA::Descriptor to not trash up the CUDA device.
    pub fn destroy_convolution_descriptor(desc: cudnnConvolutionDescriptor_t) -> Result<(), Error> {
        unsafe { API::ffi_destroy_convolution_descriptor(desc) }
    }

    /// Initializes a generic CUDA cuDNN Convolution Descriptor with specific properties.
    pub fn set_convolution_descriptor(
        desc: cudnnConvolutionDescriptor_t,
        data_type: cudnnDataType_t,
        mode: cudnnConvolutionMode_t,
        array_length: ::libc::c_int,
        pad_a: *const ::libc::c_int,
        filter_stride_a: *const ::libc::c_int,
        upscale_a: *const ::libc::c_int,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_set_convolution_nd_descriptor(
                desc,
                data_type,
                mode,
                array_length,
                pad_a,
                filter_stride_a,
                upscale_a,
            )
        }
    }

    /// Computes a convolution forward function.
    #[allow(clippy::too_many_arguments)]
    pub fn convolution_forward(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionFwdAlgo_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        work_space: *mut ::libc::c_void,
        work_size_in_bytes: ::libc::size_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        filter_desc: cudnnFilterDescriptor_t,
        filter_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_convolution_forward(
                handle,
                alpha,
                src_desc,
                src_data,
                filter_desc,
                filter_data,
                conv_desc,
                algo,
                work_space,
                work_size_in_bytes,
                beta,
                dest_desc,
                dest_data,
            )
        }
    }

    /// Computes a convolution backward function w.r.t the bias.
    pub fn convolution_backward_bias(
        handle: cudnnHandle_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_convolution_backward_bias(
                handle, alpha, src_desc, src_data, beta, dest_desc, dest_data,
            )
        }
    }

    /// Computes a convolution backward function w.r.t filter coefficient.
    #[allow(clippy::too_many_arguments)]
    pub fn convolution_backward_filter(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionBwdFilterAlgo_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        work_space: *mut ::libc::c_void,
        work_size_in_bytes: ::libc::size_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        diff_desc: cudnnTensorDescriptor_t,
        diff_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        grad_desc: cudnnFilterDescriptor_t,
        grad_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_convolution_backward_filter(
                handle,
                alpha,
                src_desc,
                src_data,
                diff_desc,
                diff_data,
                conv_desc,
                algo,
                work_space,
                work_size_in_bytes,
                beta,
                grad_desc,
                grad_data,
            )
        }
    }

    /// Computes a convolution backward function w.r.t the output tensor.
    #[allow(clippy::too_many_arguments)]
    pub fn convolution_backward_data(
        handle: cudnnHandle_t,
        algo: cudnnConvolutionBwdDataAlgo_t,
        conv_desc: cudnnConvolutionDescriptor_t,
        work_space: *mut ::libc::c_void,
        work_size_in_bytes: ::libc::size_t,
        alpha: *const ::libc::c_void,
        filter_desc: cudnnFilterDescriptor_t,
        filter_data: *const ::libc::c_void,
        diff_desc: cudnnTensorDescriptor_t,
        diff_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        grad_desc: cudnnTensorDescriptor_t,
        grad_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_convolution_backward_data(
                handle,
                alpha,
                filter_desc,
                filter_data,
                diff_desc,
                diff_data,
                conv_desc,
                algo,
                work_space,
                work_size_in_bytes,
                beta,
                grad_desc,
                grad_data,
            )
        }
    }

    unsafe fn ffi_create_convolution_descriptor() -> Result<cudnnConvolutionDescriptor_t, Error> {
        let mut desc: cudnnConvolutionDescriptor_t = ::std::ptr::null_mut();
        match cudnnCreateConvolutionDescriptor(&mut desc) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(desc),
            cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => {
                Err(Error::AllocFailed("The resources could not be allocated."))
            }
            status => Err(Error::Unknown(
                "Unable to create generic CUDA cuDNN Convolution Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    unsafe fn ffi_destroy_convolution_descriptor(
        desc: cudnnConvolutionDescriptor_t,
    ) -> Result<(), Error> {
        match cudnnDestroyConvolutionDescriptor(desc) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            status => Err(Error::Unknown(
                "Unable to destroy CUDA cuDNN Convolution Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    unsafe fn ffi_set_convolution_nd_descriptor(
        desc: cudnnConvolutionDescriptor_t,
        data_type: cudnnDataType_t,
        mode: cudnnConvolutionMode_t,
        array_length: ::libc::c_int,
        pad_a: *const ::libc::c_int,
        filter_stride_a: *const ::libc::c_int,
        upscale_a: *const ::libc::c_int,
    ) -> Result<(), Error> {
        match cudnnSetConvolutionNdDescriptor(desc, array_length, pad_a, filter_stride_a, upscale_a, mode, data_type) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: `desc` is NULL. `array_length` is negative, `mode` or `data_type` is invalid, element of `pad_a` is negative, element of `stride_a` is negative or zero.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met: `array_length` is greater than CUDNN_DIM_MAX. `upscale_a` contains an element different from 1.")),
           status => Err(Error::Unknown("Unable to set CUDA cuDNN Convolution Descriptor.", status as i32 as u64)),

        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_convolution_forward(
        handle: cudnnHandle_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        filter_desc: cudnnFilterDescriptor_t,
        filter_data: *const ::libc::c_void,
        conv_desc: cudnnConvolutionDescriptor_t,
        algo: cudnnConvolutionFwdAlgo_t,
        work_space: *mut ::libc::c_void,
        work_size_in_bytes: ::libc::size_t,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        let status = cudnnConvolutionForward(
            handle,
            alpha,
            src_desc,
            src_data,
            filter_desc,
            filter_data,
            conv_desc,
            algo,
            work_space,
            work_size_in_bytes,
            beta,
            dest_desc,
            dest_data,
        );
        match status {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: At least one of the following is NULL: `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc`, `src_data`, `alpha`, `beta`. `src_desc` and `dest_desc` have a non-matching number of dimensions. `src_desc` and `filter_desc` have a non-matching number of dimensions. `src_desc` has fewer than three number of dimensions. `src_desc`s number of dimensions is not equal to `conv_desc`s `array_length` + 2. `src_desc` and `filter_desc` have a non-matching number of input feature maps per image. `src_desc`, `filter_desc` and `dest_desc` have a non-matching data type. For some spatial dimension, `filter_desc` has a spatial size that is larger than the input spatial size (including zero-padding size).")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met: `src_desc` or `dest_desc` have negative tensor striding. `src_desc`, `filter_desc` or `dest_desc` has a number of dimensions that is not 4 or 5. The chosen algo does not support the parameters provided; see the reference for exhaustive list of parameter support for each algo")),
           status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional forward.", status as i32 as u64)),

        }
    }

    unsafe fn ffi_convolution_backward_bias(
        handle: cudnnHandle_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        match cudnnConvolutionBackwardBias(handle, alpha, src_desc, src_data, beta, dest_desc, dest_data) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters  n,h,w of the output tensor is not 1. The numbers of feature maps of the input tensor and output tensor differ. The  dataType of the two tensor descriptors are different.")),
           status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional backward bias.", status as i32 as u64)),

        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_convolution_backward_filter(
        handle: cudnnHandle_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        diff_desc: cudnnTensorDescriptor_t,
        diff_data: *const ::libc::c_void,
        conv_desc: cudnnConvolutionDescriptor_t,
        algo: cudnnConvolutionBwdFilterAlgo_t,
        work_space: *mut ::libc::c_void,
        work_size_in_bytes: ::libc::size_t,
        beta: *const ::libc::c_void,
        grad_desc: cudnnFilterDescriptor_t,
        grad_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        match cudnnConvolutionBackwardFilter(handle, alpha, src_desc, src_data, diff_desc, diff_data, conv_desc, algo, work_space, work_size_in_bytes, beta, grad_desc, grad_data) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: At least one of the following is NULL: `handle`, `src_desc`, `diff_desc`, `conv_desc`, `grad_desc`, `src_data`, `diff_data`, `grad_data`, `alpha`, `beta`. `src_desc` and `diff_desc` have a non-matching number of dimensions. `src_desc` and `grad_desc` have a non-matching number of dimensions. `src_desc` has fewer than three number of dimensions. `src_desc`, `diff_desc` and `grad_desc` have a non-matching data type. `src_desc` and `grad_desc` have a non-matching number of input feature maps per image.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met: `src_desc` or `diff_desc` have negative tensor striding. `src_desc`, `diff_desc` or `grad_desc` has a number of dimensions that is not 4 or 5. The chosen algo does not support the parameters provided; see the reference for exhaustive list of parameter support for each algo")),
            cudnnStatus_t::CUDNN_STATUS_MAPPING_ERROR => Err(Error::MappingError("An error occurs during the texture binding of the filter data.")),
            cudnnStatus_t::CUDNN_STATUS_EXECUTION_FAILED => Err(Error::ExecutionFailed("Execution failed to launch on GPU.")),
           status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional backward filter.", status as i32 as u64)),

        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_convolution_backward_data(
        handle: cudnnHandle_t,
        alpha: *const ::libc::c_void,
        filter_desc: cudnnFilterDescriptor_t,
        filter_data: *const ::libc::c_void,
        diff_desc: cudnnTensorDescriptor_t,
        diff_data: *const ::libc::c_void,
        conv_desc: cudnnConvolutionDescriptor_t,
        algo: cudnnConvolutionBwdDataAlgo_t,
        work_space: *mut ::libc::c_void,
        work_size_in_bytes: ::libc::size_t,
        beta: *const ::libc::c_void,
        grad_desc: cudnnTensorDescriptor_t,
        grad_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        match cudnnConvolutionBackwardData(handle, alpha, filter_desc, filter_data, diff_desc, diff_data, conv_desc, algo, work_space, work_size_in_bytes, beta, grad_desc, grad_data) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: At least one of the following is NULL: `handle`, `diff_desc`, `filter_desc`, `conv_desc`, `grad_desc`, `diff_data`, `filter_data`, `grad_data`, `alpha`, `beta`. `filter_desc` and `diff_desc` have a non-matching number of dimensions. `filter_desc` and `grad_desc` have a non-matching number of dimensions. `filter_desc has fewer than three number of dimensions. `filter_desc`, `grad_desc` and `diff_desc` have a non-matching data type. `filter_desc` and `grad_desc` have a non-matching number of input feature maps per image. `diff_desc`s spatial sizes do not match with the expected size as determined by `cudnnGetConvolutionNdForwardOutputDim()`.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met:  `diff_desc` or `grad_desc` have negative tensor striding. `diff_desc`, `filter_desc` or `grad_desc` has a number of dimensions that is not 4 or 5. The chosen algo does not support the parameters provided; see the reference for exhaustive list of parameter support for each algo")),
            cudnnStatus_t::CUDNN_STATUS_MAPPING_ERROR => Err(Error::MappingError("An error occurs during the texture binding of the filter data or the input differential tensor data.")),
            cudnnStatus_t::CUDNN_STATUS_EXECUTION_FAILED => Err(Error::ExecutionFailed("Execution failed to launch on GPU.")),
           status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional backward data.", status as i32 as u64)),

        }
    }
}