1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//! Provides the pooling functionality from the CUDA cuDNN API.
//!
//! This includes the Pooling Descriptor as well as the Pooling for- and backwar computation.

use crate::ffi::*;
use crate::{Error, API};

impl API {
    /// Creates a generic CUDA cuDNN Pooling Descriptor.
    pub fn create_pooling_descriptor() -> Result<cudnnPoolingDescriptor_t, Error> {
        unsafe { API::ffi_create_pooling_descriptor() }
    }

    /// Destroys a CUDA cuDNN Pooling Descriptor.
    ///
    /// Should be called when freeing a CUDA::Descriptor to not trash up the CUDA device.
    pub fn destroy_pooling_descriptor(desc: cudnnPoolingDescriptor_t) -> Result<(), Error> {
        unsafe { API::ffi_destroy_pooling_descriptor(desc) }
    }

    /// Initializes a generic CUDA cuDNN Pooling Descriptor with specific properties.
    pub fn set_pooling_descriptor(
        desc: cudnnPoolingDescriptor_t,
        mode: cudnnPoolingMode_t,
        maxpooling_nan_opt: cudnnNanPropagation_t,
        nb_dims: ::libc::c_int,
        window: *const ::libc::c_int,
        padding: *const ::libc::c_int,
        stride: *const ::libc::c_int,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_set_pooling_nd_descriptor(
                desc,
                mode,
                maxpooling_nan_opt,
                nb_dims,
                window,
                padding,
                stride,
            )
        }
    }

    /// Return information about a generic CUDA cuDNN Pooling Descriptor.
    #[allow(clippy::too_many_arguments)]
    pub fn get_pooling_descriptor(
        desc: cudnnPoolingDescriptor_t,
        nb_dims_requested: ::libc::c_int,
        mode: *mut cudnnPoolingMode_t,
        maxpooling_nan_opt: *mut cudnnNanPropagation_t,
        nb_dims: *mut ::libc::c_int,
        window: *mut ::libc::c_int,
        padding: *mut ::libc::c_int,
        stride: *mut ::libc::c_int,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_get_pooling_nd_descriptor(
                desc,
                nb_dims_requested,
                mode,
                maxpooling_nan_opt,
                nb_dims,
                window,
                padding,
                stride,
            )
        }
    }

    /// Initializes a generic CUDA cuDNN Pooling Descriptor with specific properties.
    #[allow(clippy::too_many_arguments)]
    pub fn set_pooling_2d_descriptor(
        desc: cudnnPoolingDescriptor_t,
        mode: cudnnPoolingMode_t,
        nan_propagation: cudnnNanPropagation_t,
        window_height: ::libc::c_int,
        window_width: ::libc::c_int,
        vertical_padding: ::libc::c_int,
        horizontal_padding: ::libc::c_int,
        vertical_stride: ::libc::c_int,
        horizontal_stride: ::libc::c_int,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_set_pooling_2d_descriptor(
                desc,
                mode,
                nan_propagation,
                window_height,
                window_width,
                vertical_padding,
                horizontal_padding,
                vertical_stride,
                horizontal_stride,
            )
        }
    }

    /// Return information about a generic CUDA cuDNN Pooling Descriptor.
    #[allow(clippy::too_many_arguments)]
    pub fn get_pooling_2d_descriptor(
        desc: cudnnPoolingDescriptor_t,
        mode: *mut cudnnPoolingMode_t,
        nan_propagation: *mut cudnnNanPropagation_t,
        window_height: *mut ::libc::c_int,
        window_width: *mut ::libc::c_int,
        vertical_padding: *mut ::libc::c_int,
        horizontal_padding: *mut ::libc::c_int,
        vertical_stride: *mut ::libc::c_int,
        horizontal_stride: *mut ::libc::c_int,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_get_pooling_2d_descriptor(
                desc,
                mode,
                nan_propagation,
                window_height,
                window_width,
                vertical_padding,
                horizontal_padding,
                vertical_stride,
                horizontal_stride,
            )
        }
    }

    /// Initializes a generic CUDA cuDNN Pooling Descriptor with specific properties.
    pub fn get_pooling_forward_output_dim(
        pooling_desc: cudnnPoolingDescriptor_t,
        input_desc: cudnnTensorDescriptor_t,
        nb_dims: ::libc::c_int,
        out_dim_a: *mut ::libc::c_int,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_get_pooling_nd_forward_output_dim(pooling_desc, input_desc, nb_dims, out_dim_a)
        }
    }

    /// Computes a pooling forward function.
    #[allow(clippy::too_many_arguments)]
    pub fn pooling_forward(
        handle: cudnnHandle_t,
        pooling_desc: cudnnPoolingDescriptor_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_pooling_forward(
                handle,
                pooling_desc,
                alpha,
                src_desc,
                src_data,
                beta,
                dest_desc,
                dest_data,
            )
        }
    }

    /// Computes a pooling backward function.
    #[allow(clippy::too_many_arguments)]
    pub fn pooling_backward(
        handle: cudnnHandle_t,
        pooling_desc: cudnnPoolingDescriptor_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        src_diff_desc: cudnnTensorDescriptor_t,
        src_diff_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *const ::libc::c_void,
        dest_diff_desc: cudnnTensorDescriptor_t,
        dest_diff_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        unsafe {
            API::ffi_pooling_backward(
                handle,
                pooling_desc,
                alpha,
                src_desc,
                src_data,
                src_diff_desc,
                src_diff_data,
                beta,
                dest_desc,
                dest_data,
                dest_diff_desc,
                dest_diff_data,
            )
        }
    }

    unsafe fn ffi_create_pooling_descriptor() -> Result<cudnnPoolingDescriptor_t, Error> {
        let mut desc: cudnnPoolingDescriptor_t = ::std::ptr::null_mut();
        match cudnnCreatePoolingDescriptor(&mut desc) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(desc),
            cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => {
                Err(Error::AllocFailed("The resources could not be allocated."))
            }
            status => Err(Error::Unknown(
                "Unable to create generic CUDA cuDNN Pooling Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    unsafe fn ffi_destroy_pooling_descriptor(desc: cudnnPoolingDescriptor_t) -> Result<(), Error> {
        match cudnnDestroyPoolingDescriptor(desc) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            status => Err(Error::Unknown(
                "Unable to destroy CUDA cuDNN Pooling Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    unsafe fn ffi_set_pooling_nd_descriptor(
        desc: cudnnPoolingDescriptor_t,
        mode: cudnnPoolingMode_t,
        maxpooling_nan_opt: cudnnNanPropagation_t,
        nb_dims: ::libc::c_int,
        window_dim_a: *const ::libc::c_int,
        padding_a: *const ::libc::c_int,
        stride_a: *const ::libc::c_int,
    ) -> Result<(), Error> {
        match cudnnSetPoolingNdDescriptor(
            desc,
            mode,
            maxpooling_nan_opt,
            nb_dims,
            window_dim_a,
            padding_a,
            stride_a,
        ) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam(
                "`window_dim_a`, `padding_a` or `stride_a` has negative element or invalid `mode`.",
            )),
            status => Err(Error::Unknown(
                "Unable to set CUDA cuDNN Pooling Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_get_pooling_nd_descriptor(
        desc: cudnnPoolingDescriptor_t,
        nb_dims_requested: ::libc::c_int,
        mode: *mut cudnnPoolingMode_t,
        maxpooling_nan_opt: *mut cudnnNanPropagation_t,
        nb_dims: *mut ::libc::c_int,
        window_dim_a: *mut ::libc::c_int,
        padding_a: *mut ::libc::c_int,
        stride_a: *mut ::libc::c_int,
    ) -> Result<(), Error> {
        match cudnnGetPoolingNdDescriptor(
            desc,
            nb_dims_requested,
            mode,
            maxpooling_nan_opt,
            nb_dims,
            window_dim_a,
            padding_a,
            stride_a,
        ) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam(
                "`window_dim_a`, `padding_a` or `stride_a` has negative element or invalid `mode`.",
            )),
            status => Err(Error::Unknown(
                "Unable to get CUDA cuDNN Pooling Descriptor.",
                status as i32 as u64,
            )),
        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_set_pooling_2d_descriptor(
        desc: cudnnPoolingDescriptor_t,
        mode: cudnnPoolingMode_t,
        maxpooling_nan_opt: cudnnNanPropagation_t,
        window_height: ::libc::c_int,
        window_width: ::libc::c_int,
        vertical_padding: ::libc::c_int,
        horizontal_padding: ::libc::c_int,
        vertical_stride: ::libc::c_int,
        horizontal_stride: ::libc::c_int,
    ) -> Result<(), Error> {
        match cudnnSetPooling2dDescriptor(
            desc,
            mode,
            maxpooling_nan_opt,
            window_height,
            window_width,
            vertical_padding,
            horizontal_padding,
            vertical_stride,
            horizontal_stride,
        ) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam(
                "`window_dim_a`, `padding_a` or `stride_a` has negative element or invalid `mode`.",
            )),
            status => Err(Error::Unknown(
                "Unable to set CUDA cuDNN Pooling Descriptor 2D.",
                status as i32 as u64,
            )),
        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_get_pooling_2d_descriptor(
        desc: cudnnPoolingDescriptor_t,
        mode: *mut cudnnPoolingMode_t,
        maxpooling_nan_opt: *mut cudnnNanPropagation_t,
        window_height: *mut ::libc::c_int,
        window_width: *mut ::libc::c_int,
        vertical_padding: *mut ::libc::c_int,
        horizontal_padding: *mut ::libc::c_int,
        vertical_stride: *mut ::libc::c_int,
        horizontal_stride: *mut ::libc::c_int,
    ) -> Result<(), Error> {
        match cudnnGetPooling2dDescriptor(
            desc,
            mode,
            maxpooling_nan_opt,
            window_height,
            window_width,
            vertical_padding,
            horizontal_padding,
            vertical_stride,
            horizontal_stride,
        ) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam(
                "`window_dim_a`, `padding_a` or `stride_a` has negative element or invalid `mode`.",
            )),
            status => Err(Error::Unknown(
                "Unable to get CUDA cuDNN Pooling Descriptor 2D.",
                status as i32 as u64,
            )),
        }
    }

    unsafe fn ffi_get_pooling_nd_forward_output_dim(
        pooling_desc: cudnnPoolingDescriptor_t,
        input_desc: cudnnTensorDescriptor_t,
        nb_dims: ::libc::c_int,
        out_dim_a: *mut ::libc::c_int,
    ) -> Result<(), Error> {
        match cudnnGetPoolingNdForwardOutputDim(pooling_desc, input_desc, nb_dims, out_dim_a) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("`pooling_desc` not initialized or `nb_dims` is inconsistent with `pooling_desc` and `input_desc`.")),
           status => Err(Error::Unknown("Unable to get CUDA cuDNN Pooling Forward Output dimensions.", status as i32 as u64)),

        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_pooling_forward(
        handle: cudnnHandle_t,
        desc: cudnnPoolingDescriptor_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        match cudnnPoolingForward(handle, desc, alpha, src_desc, src_data, beta, dest_desc, dest_data) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The dimensions n, c of the input tensor and output tensors differ. The datatype of the input tensor and output tensors differs.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The `w_stride` of input tensor or output tensor is not 1.")),
            cudnnStatus_t::CUDNN_STATUS_EXECUTION_FAILED => Err(Error::ExecutionFailed("Execution failed to launch on GPU.")),
           status => Err(Error::Unknown("Unable to compute pooling forward.", status as i32 as u64)),

        }
    }

    #[allow(clippy::too_many_arguments)]
    unsafe fn ffi_pooling_backward(
        handle: cudnnHandle_t,
        desc: cudnnPoolingDescriptor_t,
        alpha: *const ::libc::c_void,
        src_desc: cudnnTensorDescriptor_t,
        src_data: *const ::libc::c_void,
        src_diff_desc: cudnnTensorDescriptor_t,
        src_diff_data: *const ::libc::c_void,
        beta: *const ::libc::c_void,
        dest_desc: cudnnTensorDescriptor_t,
        dest_data: *const ::libc::c_void,
        dest_diff_desc: cudnnTensorDescriptor_t,
        dest_diff_data: *mut ::libc::c_void,
    ) -> Result<(), Error> {
        match cudnnPoolingBackward(handle, desc, alpha, src_desc, src_data, src_diff_desc, src_diff_data, dest_desc, dest_data, beta, dest_diff_desc, dest_diff_data) {
            cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
            cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The dimensions n,c,h,w of the `src_desc` and `src_diff_desc` tensors differ. The strides nStride, cStride, hStride, wStride of the `src_desc` and `src_diff_desc` tensors differ. The dimensions n,c,h,w of the `dest_desc` and `dest_diff_desc` tensors differ. The strides nStride, cStride, hStride, wStride of the `dest_desc` and `dest_diff_desc` tensors differ. The datatype of the four tensors differ.")),
            cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The `w_stride` of input tensor or output tensor is not 1.")),
            cudnnStatus_t::CUDNN_STATUS_EXECUTION_FAILED => Err(Error::ExecutionFailed("Execution failed to launch on GPU.")),
           status => Err(Error::Unknown("Unable to compute pooling backward.", status as i32 as u64)),

        }
    }
}