Struct juice::layers::container::sequential::Sequential
source · pub struct Sequential<B: IBackend + LayerOps<f32>> { /* private fields */ }
Expand description
Sequential Layer
Implementations§
source§impl<B: IBackend + LayerOps<f32> + 'static> Sequential<B>
impl<B: IBackend + LayerOps<f32> + 'static> Sequential<B>
sourcepub fn empty() -> Sequential<B>
pub fn empty() -> Sequential<B>
Create a empty Sequential container layer.
sourcepub fn from_config(backend: Rc<B>, config: &SequentialConfig) -> Sequential<B>
pub fn from_config(backend: Rc<B>, config: &SequentialConfig) -> Sequential<B>
Create a Sequential layer from a SequentialConfig.
sourcepub fn init_layers(&mut self, backend: Rc<B>, in_config: &SequentialConfig)
pub fn init_layers(&mut self, backend: Rc<B>, in_config: &SequentialConfig)
Initializes a sequential container.
Sets up the structure of the sequential container. It reads the supplied SequentialConfig, connects the input and output blobs of each layer and determines if the backpropagation has to be executed for each tensor and layer.
Trait Implementations§
source§impl<B: IBackend + LayerOps<f32> + 'static> ComputeInputGradient<f32, B> for Sequential<B>
impl<B: IBackend + LayerOps<f32> + 'static> ComputeInputGradient<f32, B> for Sequential<B>
source§fn compute_input_gradient(
&self,
backend: &B,
weights_data: &[&SharedTensor<f32>],
output_data: &[&SharedTensor<f32>],
output_gradients: &[&SharedTensor<f32>],
input_data: &[&SharedTensor<f32>],
input_gradients: &mut [&mut SharedTensor<f32>]
)
fn compute_input_gradient( &self, backend: &B, weights_data: &[&SharedTensor<f32>], output_data: &[&SharedTensor<f32>], output_gradients: &[&SharedTensor<f32>], input_data: &[&SharedTensor<f32>], input_gradients: &mut [&mut SharedTensor<f32>] )
Compute gradients with respect to the inputs and write them into
input_gradients
.source§impl<B: IBackend + LayerOps<f32> + 'static> ComputeOutput<f32, B> for Sequential<B>
impl<B: IBackend + LayerOps<f32> + 'static> ComputeOutput<f32, B> for Sequential<B>
source§fn compute_output(
&self,
backend: &B,
weights: &[&SharedTensor<f32>],
input_data: &[&SharedTensor<f32>],
output_data: &mut [&mut SharedTensor<f32>]
)
fn compute_output( &self, backend: &B, weights: &[&SharedTensor<f32>], input_data: &[&SharedTensor<f32>], output_data: &mut [&mut SharedTensor<f32>] )
Compute output for given input and write them into
output_data
.source§impl<B: IBackend + LayerOps<f32> + 'static> ComputeParametersGradient<f32, B> for Sequential<B>
impl<B: IBackend + LayerOps<f32> + 'static> ComputeParametersGradient<f32, B> for Sequential<B>
source§fn compute_parameters_gradient(
&self,
backend: &B,
output_data: &[&SharedTensor<f32>],
output_gradients: &[&SharedTensor<f32>],
input_data: &[&SharedTensor<f32>],
parameters_gradients: &mut [&mut SharedTensor<f32>]
)
fn compute_parameters_gradient( &self, backend: &B, output_data: &[&SharedTensor<f32>], output_gradients: &[&SharedTensor<f32>], input_data: &[&SharedTensor<f32>], parameters_gradients: &mut [&mut SharedTensor<f32>] )
Compute gradients with respect to the parameters and write them into
parameters_gradients
.source§impl<B: IBackend + LayerOps<f32> + 'static> ILayer<B> for Sequential<B>
impl<B: IBackend + LayerOps<f32> + 'static> ILayer<B> for Sequential<B>
source§fn is_container(&self) -> bool
fn is_container(&self) -> bool
Return wether the layer is a container. Read more
source§fn inputs_data(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
fn inputs_data(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
Return the input tensors of the layer. Read more
source§fn inputs_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
fn inputs_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
Return the gradients of the input tensors of the layer. Read more
source§fn outputs_data(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
fn outputs_data(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
Return the output tensors of the layer. Read more
source§fn outputs_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
fn outputs_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
Return the gradients of the output tensors of the layer. Read more
source§fn learnable_weights(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
fn learnable_weights(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
Return the learnable weights inside the layer. Read more
source§fn learnable_weights_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
fn learnable_weights_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>>
Return the gradients for the learnable weights inside the layer. Read more
source§fn learnable_weights_names(&self) -> Option<Vec<String>>
fn learnable_weights_names(&self) -> Option<Vec<String>>
Return the names of the learnable weights inside the layer. Read more
Adjust size of shared workspace. Read more
source§fn forward(
&self,
backend: &B,
input_data: &[ArcLock<SharedTensor<f32>>],
weights_data: &[ArcLock<SharedTensor<f32>>],
output_data: &mut [ArcLock<SharedTensor<f32>>]
)
fn forward( &self, backend: &B, input_data: &[ArcLock<SharedTensor<f32>>], weights_data: &[ArcLock<SharedTensor<f32>>], output_data: &mut [ArcLock<SharedTensor<f32>>] )
Compute the [feedforward][1] layer output using the provided Backend.
[1]: https://en.wikipedia.org/wiki/Feedforward_neural_network Read more
source§fn backward_input(
&self,
backend: &B,
weights_data: &[ArcLock<SharedTensor<f32>>],
output_data: &[ArcLock<SharedTensor<f32>>],
output_gradients: &[ArcLock<SharedTensor<f32>>],
input_data: &[ArcLock<SharedTensor<f32>>],
input_gradients: &mut [ArcLock<SharedTensor<f32>>]
)
fn backward_input( &self, backend: &B, weights_data: &[ArcLock<SharedTensor<f32>>], output_data: &[ArcLock<SharedTensor<f32>>], output_gradients: &[ArcLock<SharedTensor<f32>>], input_data: &[ArcLock<SharedTensor<f32>>], input_gradients: &mut [ArcLock<SharedTensor<f32>>] )
Compute the [backpropagation][1] input gradient using the provided backend.
[1]: https://en.wikipedia.org/wiki/Backpropagation Read more
source§fn backward_parameters(
&self,
backend: &B,
output_data: &[ArcLock<SharedTensor<f32>>],
output_gradients: &[ArcLock<SharedTensor<f32>>],
input_data: &[ArcLock<SharedTensor<f32>>],
weights_gradients: &mut [ArcLock<SharedTensor<f32>>]
)
fn backward_parameters( &self, backend: &B, output_data: &[ArcLock<SharedTensor<f32>>], output_gradients: &[ArcLock<SharedTensor<f32>>], input_data: &[ArcLock<SharedTensor<f32>>], weights_gradients: &mut [ArcLock<SharedTensor<f32>>] )
Compute the [backpropagation][1] parameters gradient using the provided backend.
[1]: https://en.wikipedia.org/wiki/Backpropagation Read more
source§fn reshape(
&mut self,
backend: Rc<B>,
input_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
input_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
weights_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
weights_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
output_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
output_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>
)
fn reshape( &mut self, backend: Rc<B>, input_data: &mut Vec<ArcLock<SharedTensor<f32>>>, input_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>, weights_data: &mut Vec<ArcLock<SharedTensor<f32>>>, weights_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>, output_data: &mut Vec<ArcLock<SharedTensor<f32>>>, output_gradient: &mut Vec<ArcLock<SharedTensor<f32>>> )
Adjust to shapes of the output blobs to fit the shapes of the input blobs. Read more
source§fn auto_output_blobs(&self) -> bool
fn auto_output_blobs(&self) -> bool
Return whether “anonymous” output blobs are created automatically for the layer. Read more
source§fn min_output_blobs(&self) -> usize
fn min_output_blobs(&self) -> usize
Returns the minimum number of output blobs required by the layer,
or 0 if no minimum number is required. Read more
source§fn exact_num_output_blobs(&self) -> Option<usize>
fn exact_num_output_blobs(&self) -> Option<usize>
Returns the exact number of output blobs required by the layer,
or
None
if no exact number is required. Read moresource§fn auto_weight_blobs(&self) -> bool
fn auto_weight_blobs(&self) -> bool
Return whether weight blobs are created automatically for the layer. Read more
source§fn exact_num_input_blobs(&self) -> Option<usize>
fn exact_num_input_blobs(&self) -> Option<usize>
Returns the exact number of input blobs required by the layer,
or
None
if no exact number is required. Read moresource§fn allow_force_backward(&self, input_id: usize) -> bool
fn allow_force_backward(&self, input_id: usize) -> bool
Return whether to allow force_backward for a given input blob index. Read more
source§fn sync_native(&self) -> bool
fn sync_native(&self) -> bool
Return wether a simple native backend should be used to [sync][1] instead of the default backend.
[1]: #method.sync Read more
source§fn compute_in_place(&self) -> bool
fn compute_in_place(&self) -> bool
Return wether the computations of a layer should be done in-place (the output will be written where the input was read from). Read more
Auto Trait Implementations§
impl<B> !RefUnwindSafe for Sequential<B>
impl<B> !Send for Sequential<B>
impl<B> !Sync for Sequential<B>
impl<B> Unpin for Sequential<B>
impl<B> !UnwindSafe for Sequential<B>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more